Formation of Iodide Thin Films in Non-Equilibrium Growth

1999 ◽  
Vol 215 (2) ◽  
pp. 1025-1032 ◽  
Author(s):  
Jizhong Zhang ◽  
Xiaoyan Ye ◽  
Xiaodong Yang
2013 ◽  
Vol 24 (3) ◽  
pp. 437-453 ◽  
Author(s):  
CARLOS ESCUDERO ◽  
ROBERT HAKL ◽  
IRENEO PERAL ◽  
PEDRO J. TORRES

We present the formal geometric derivation of a non-equilibrium growth model that takes the form of a parabolic partial differential equation. Subsequently, we study its stationary radial solutions by means of variational techniques. Our results depend on the size of a parameter that plays the role of the strength of forcing. For small forcing we prove the existence and multiplicity of solutions to the elliptic problem. We discuss our results in the context of non-equilibrium statistical mechanics.


2021 ◽  
Author(s):  
Norihiro Shimoi

In this work, we have discovered a method of forming ZnO thin films with high mobility, high carrier density and low resistivity on plastic (PET) films using non-equilibrium reaction fields, even when the films are deposited without heating, and we have also found a thin film formation technique using a wet process that is different from conventional deposition techniques. The field emission electron-beam irradiation treatment energetically activates the surface of ZnO particles and decomposes each ZnO particles. The energy transfer between zinc ions and ZnO surface and the oxygen present in the atmosphere around the ZnO particles induce the oxidation of zinc. In addition, the ZnO thin films obtained in this study successfully possess high functional thin films with high electrical properties, including high hole mobility of 208.6 cm2/Vs, despite being on PET film substrates. These results contribute to the discovery of a mechanism to create highly functional oxide thin films using a simple two-dimensional process without any heat treatment on the substrate or during film deposition. In addition, we have elucidated the interfacial phenomena and crosslinking mechanisms that occur during the bonding of metal oxide particles, and understood the interfacial physical properties and their effects on the electronic structure. and surface/interface control, and control of higher-order functional properties in metal/ceramics/semiconductor composites, and contribute to the provision of next-generation nanodevice components in a broad sense.


2005 ◽  
Vol 862 ◽  
Author(s):  
R. J. Soukup ◽  
N. J. Ianno ◽  
J. S. Schrader ◽  
V. L. Dalal

AbstractExperimental results on thin films of the new material GexC1-x, deposited by a unique dual plasma hollow cathode sputtering technique are presented. The mostimportant contribution of this work is that it shows that by using non-equilibrium growth conditions resulting from the hollow cathode technique, one can grow Group IV materials which cannot otherwise be grown using normal CVD or MBE processes. The sputtering is accomplished by igniting a dc plasma in the Ar and H2 gases which are fed through Ge and C nozzles.The GeC films are grown on etched Si (100), on Si with the native oxide and on glass. The films grown on glass were quite disordered, but the films grown on both types of Si substrates were very ordered in nature. This order has been characterized using Xray diffraction (XRD) and Raman spectroscopy.Films with as much as 8% C have been deposited. In order to produce useful GexC1-x films, the C must bond to the Ge at lattice sites. Evidence of this desired GeC bond has been seen using Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy, and XRD.


1979 ◽  
pp. 341-348
Author(s):  
D. Valentovič ◽  
J. Červenák ◽  
S. Luby ◽  
M. L. Aldea ◽  
T. Boțilǎ

2018 ◽  
Vol 185 ◽  
pp. 11005
Author(s):  
Maria A. Shlyakhtich ◽  
Pavel V. Prudnikov

In this work we study the non-equilibrium properties of Heisenberg ferromagnetic films using Monte Carlo simulations by short-time dynamic method. By exploring the short-time scaling dynamics, we have found thickness dependency of critical exponents z, θ′ and β/v for ferromagnetic thin film. For calculating the critical exponents of ferromagnetic films we considered systems with linear size L = 128 and layers number N = 2; 4; 6; 10. Starting from initial configurations, the system was updated with Metropolis algorithm at the critical temperatures


2003 ◽  
Vol 774 ◽  
Author(s):  
Yi-yeoun Kim ◽  
Laurie B. Gower

AbstractOur biomimetic approach for fabricating organic-inorganic composites with structures similar to biominerals is based on a novel mineralization process, called the Polymer-Induced-Liquid-Precursor (PILP) process. This process enables the deposition of non-equilibrium mineral morphologies of calcite under low-temperature and aqueous-based conditions [1], including patterned thin films of calcite. We have recently found that when a surplus of acidic polymer is added, the patterned mineral films act as a secondary template for directing new crystal outgrowths, which form into complex morphologies of calcite with time, such as fibrous mats and “horsetails”. Two interdependent factors, the polymer and Ca-ion concentration, which change the local solution environment over time, appear to modulate the creation of these different structures. Such observations may provide clues for unraveling the long-standing mystery of how biological systems fabricate their sophisticated and complex morphologies.


Sign in / Sign up

Export Citation Format

Share Document